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Summary. The solvolysis rates and products of 6-exo- and 6-endo-bicyclo[3.2.11- 

octyl toluenesulfonate confirm that differential bridging strain is a major 

factor in determining the reactivity of epimeric bicyclic sulfonates. 

Evidence was presented recently 1" that bicyclic cations, to which nucleo- 

3 philes have limited access , can be stabilized by bridging of the cationic 

center by a pentacoordinate carbon atom in the 3-position; and it was concluded 

that differential bridging strain is a major cause of different ionization rates 

of epimeric bicyclic sulfonates in 80 % ethanol 2,4 . Thus bridging by C(6) 

during the ionization of 2-exo-norbornyl tosylate (exo-l) to the ion pair 2 

involves far less strain than bridging by C(7) in the ionization of endo-l to - 

the ion pair 3, the strain difference leading to an exo/endo rate ratio of 425 ' 

(Table 1). 

exo -1 endo-l 2 3 - - - - 

Effective 1,3-bridging implies that the back lobe of the C(3)-R orbital in 

4 overlap strongly with the p-orbital of the incipient cationic center C(1) '. 

This condition is satisfied in the cation 2, since the orbital axes (dotted 

lines) converge and intersect, but not in the cation 3 where the orbital axes 

are well separated. 
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It is instructive to compare exo-l and endo-l with the homologous C-exo- 

and 6-endo-bicyclo[3.2.1loctyl tosylates 6 , exo-5 and endo-?, respectively, - 

because their rates differ markedly despite the structural similarities. Thus, 

exo-5 reacts 371 times slower than exo-1 while endo- reacts only 11 times - - 

slower than endo-l (Table 1). The much larger rate reduction for exo-5 causes 

the exo-l/endo-2 rate ratio to drop to 13 (Table 1) '. 

exo-5 endo-5_ 6 

s 9 10 - 

Table 1. First order rate constants for exo-l, endo-l, exo-5 and endo- - - 
80 vol.% ethanol at 70.0' C. 

exo-1 

endo-l - 

exo-5 - 

endo- - 

k (set-') k 
rel k 

exo'kendo 

3.58 - lo-2 4786 

8.42 - lo-' 
425 

11 

9.66 - lo-' 13 

7.48 * lO-6 
13 

1 

OTs 
1.15 - lo-5 0,65 

in 

For C(4) to bridge effectively in the cation 5 derived from exo-5 it 

should adopt a trigonal bipyramidal configuration, thereby distorting the chair 

8 conformation of the cyclohexane ring . However, the orbital axes of C(4) and 
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C(6) do not intersect in this case and overlap is therefore strongly reduced. It 

is noteworthy that participation of the C(4)-C(5) sigma bond in exo-5, as suggest- 

6 
ed by Parker , would lead to the symmetrically bridged "nonclassical" cation 1, 

an intermediate that is, however, not required by the present data. In the cation 

8 the orbital axes of C(6) and C(8) converge even less than in 

the further rate reduction of endo-5. In fact,it reacts almost - 

2-adamantyl tosylate (Table 1) which also resists bridging for 

2 
reasons . 

3, which explains 

as slowly as 

stereoelectronic 

Table 2. Reaction products (in 8) from 0.01 M exo-5 and endo- in 70 % dioxane - - 

(with 1 equiv. of NEt3) at 100' C. 

exo-5 50 

endo- 11 60 12 17 

A study of the hydrolysis products of exo-5 and endo- in 70 % dioxane - 

(Table 2) confirms Parker's results for acetolysis 6, i.e. exo-5 reacts via the - 

cation 5 to yield 50 % of bicyclo[3.2.lloct-6-ene (11) beside 13 % of 6-exo- - 

bicyclo[3.2.l]octan-6-01 12 with retention and ca. 1 % of the 6-endo-alcohol 13 - - 

with inversion. But the rearranged alcohols 14 (17 %) and 15 (19 %) are also - - 

formed, the former by a C(4)--*C(6) hydride shift to the cation 2, the latter 

by a Wagner-Meerwein rearrangement of 2 to 10. - Hydrolysis of endo- took a - 

similar course, except that the inverted 6-exo-alcohol 12 was the main product - 

(Table 2). These results SUPPOrt the conclusion that bridging is weak in the 

cation 6 and negligible in the cation 8 - -* 
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